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Abstract
This paper examines how financial network architecture affects financial system

performance and systemic risk. First, this paper outlines the behavioral rules of the
banks, non-financial transactors, and related aspects of this agent based model. Sec-
ond, this paper analyzes the financial stability of this agent based model in a complete
network, unconnected network, circle network, and star network using computer simu-
lations. Simulations are conducted for good economic conditions and for bad economic
conditions. The results indicate that the circle network performs best in terms of bank
lifespan and profitability among all other networks and that there is greater dispersion
in profitability and financial stability when there are good economic conditions than
when there are bad economic conditions.
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1 Introduction

The modern financial system is a complex web of interactions in which market participants

engage in a diverse set of transactions and relationships with other market participants.

When this global financial system functions properly, financial intermediaries move capital

from savers towards productive investments. The network gives the financial intermediaries

access to the full set of capital and investment opportunities. This complex and intercon-

nected financial system can also reach a critical state as systemic risk emerges undetected

and serve to transmit financial shocks across the system. This paper provides a theoretical

agent based model of systemic risk with banks and non-financial transactors in a complete

network, unconnected network, circle network, and star network that is calibrated with good

and bad economic conditions and tested for bank lifespan, profitability, and bank avalanches.

A growing body of financial stability research and a new set of regulatory policies to

address systemic risk has emerged since the Global Financial Crisis.1 Systemic risk in

the financial system can be difficult to detect as it can emerge even when each individual

bank appears to be stable according to traditional metrics such as bank assets, market

capitalization, price to earnings ratios, and assets.2 Stress tests such as the Dodd-Frank

Act stress test mandated by the Dodd-Frank Wall Street Reform and Consumer Protection

Act of 2010 and the Comprehensive Capital Analysis and Review are designed to focus on

1Authors Daniel Friedman and Daniel McNeil in their nontechnical book Morals and Markets: The
Dangerous Balance (2nd Edition) describe systemic risk as arising when “broken promises spread, as with
excessive leverage, where node A defaulting on node B can cause B to default on nodes C and D, in turn
causing defaults further along the links. Thus, a financial bankruptcy may bring innocent people down, even
if they don’t seem nearby, and they in turn can undermine more people. That’s what happened in September
and October 2008. The damage ripples outward, and it can take years to restore the network to health.”

2Neil Kashkari, the president of the Federal Reserve Bank of Minneapolis, in a speech at the Brookings
Institution on February 16, 2016 titled “Lessons from the Crisis: Ending Too Big to Fail” explained “A
second lesson for me from the 2008 crisis is that almost by definition, we won’t see the next crisis coming,
and it won’t look like what we might be expecting. If we, or markets, recognized an imbalance in the
economy, market participants would likely take action to protect themselves. When I first went to Treasury
in 2006, Treasury Secretary Henry Paulson directed his staff to work with financial regulators at the Federal
Reserve and the Securities and Exchange Commission to look for what might trigger the next crisis. Based
on his experience, we were due for a crisis because markets had been stable for several years. We looked at a
number of scenarios, including an individual large bank running into trouble or a hedge fund suffering large
losses, among others. We didn’t consider a nationwide housing downturn. It seems so obvious now, but we
didn’t see it, and we were looking. We must assume that policymakers will not foresee future crises, either.”
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the capital adequacy of the largest firms and both the Financial Stability Oversight Council

and the Office of Financial Research were created to monitor financial stability.3 The

Federal Reserve has also established rules for strengthening the capital positions of global

systemically important bank holding companies as they pose a greater threat to financial

stability of the United States.4 Despite these research and regulatory initiatives, there

is room for more research that combines complexity theory with agent based modeling to

understand how systemic risk emerges through the interactions between banks and other

financial market participants (Bisias et. al. (2012), Bookstaber (2014), and Battiston et. al.

(2016)).

This paper investigates the ways in which financial network architecture affects finan-

cial system performance and financial stability. The first part of the paper outlines the

behavioral rules of the banks, non-financial transactors, and related aspects of the agent

based model. The second part of the paper analyzes the financial stability of this agent

based model in a complete network, unconnected network, circle network, and star net-

work using computer simulations. The simulations are conducted for all of the financial

networks with a model calibrated for good economic conditions and for bad economic con-

ditions. The results indicate that the circle network performs best in terms of bank lifespan

and profitability among all the other networks. There is greater dispersion in profitability

and financial stability when there are good economic conditions than when there are bad

economic conditions.

This paper proceeds with a review of the related literature on systemic risk and financial

networks in Section 2. Section 3 explains the behavioral rules of the banks and non-financial

transactors. Section 4 presents and explains the model simulation results. Section 5

3For even more detail on bank stress-tests please refer to Bookstaber et. al. (2014), Tarullo (2014), and
Fischer (2015).

4The Board of Governors of the Federal Reserve System approved a final rule requiring the largest and
most systemically important U.S. bank holding companies to further strengthen their capital positions on
June 20, 2015. Eight banks were designated GSIBs: Bank of America Corporation; The Bank of New York
Mellon Corporation; Citigroup, Inc.; The Goldman Sachs Group, Inc.; JPMorgan Chase & Co.; Morgan
Stanley; State Street Corporation; and Wells Fargo & Company.
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concludes with suggestions for future research.

2 Related Literature

This paper uses agent based modeling to examine the financial stability of bank networks

and contributes to the literature on bank stability, networks, and agent based modeling.

The ideas for the agent based model in this paper draw upon the bank avalanche model by

Friedman (1998 and 2012) and the concept of self-criticality from Bak et. al. (1988). Al-

though progress has been made to better understand systemic risk since the Global Financial

Crisis there is still more work to be done (Bisias et. al. (2012), Yellen (2013), Handbook on

Systemic Risk (2013), IMF Guide to Stress Testing (2014), Bookstaber (2014), Freixas et.

al. (2015), and Battiston et. al. (2016)).

This paper contributes to the theoretical literature on banking stability with a model

in which systemic risk and financial contagion originates from the behavior of non-financial

transactors and spreads through the interbank network. Early theoretical work on bank

stability by Diamond and Dybvig (1983) examines how a rational and prudent actions by

individual depositors to limit their own risks may be highly destabilizing to an institution

designed to transform short-term liabilities into long-term assets. Allen and Gale (2002)

develop a model of how financial networks influence systemic risk and in which systemic

risk arises through liquidity shocks that spread from one bank to another and cause the

whole system to collapse. Allen and Gale (2002) find that a complete interbank network

limits the severity of a financial crisis whereas an incomplete interbank network transmits

the shock more strongly across regions. In this paper, the systemic risk emerges from within

the system similar to a sandpile model and self-criticality developed by Bak et. al. (1988)

in which the natural dynamics of a system can lead to avalanches of bank failures.5 This

5Bak et. al. (1988) describe the principle of self-criticality using a sandpile model as “To demonstrate
self-organized criticality, one needs a shoebox and a cup or two of sand - sugar or salt will do in a pinch.
Wet the sand with a small amount of water, mix, and gather the sand into the steepest possible pile in one
corner of the box. The angle of repose (i.e., the threshold slope) is larger for wet sand, so as the water
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paper, unlike Diamond and Dybvig (1983) and Allen and Gale (2002), simulates and provides

analysis of the bank avalanche model of systemic risk.

This paper also contributes to a growing literature on the role of interconnectedness and

financial stability by testing the behavior of different bank network architectures. Several

economists have used game theory and networks to explain economic behavior (Goyal (2007)

and Jackson (2010)). Caballero and Simsek (2011) build upon the interconnected bank

network of Allen and Gale (2011) but limit the amount of information that banks know

about their counterparties. Banks know their own counterparties but not the counterparty

of their counterparties. In this context, an increase in network complexity increases payoff

uncertainty and a small shock relative to agent resources leads to large fire sales. Gai,

Haldane, and Capadia (2011) show that the simplest network, rather than the complex

network, survives the longest. They find that contagion from shocks is less frequent and

less severe for lower levels than for higher levels of interconnectedness. Acemoglu, Ozdaglar,

Tahbaz-Salehi (2013) show how systemic risk in financial networks arises due to counterparty

risk and find that a complete financial network is more stable than the incomplete network

as long as the shocks are small. However, when the shocks reach a certain level then

bank interconnectedness serves as a propagation mechanism and leads to a more fragile

financial system. Glaesserman and Young (2013) develop a model of financial contagion

and examine how interconnections increase expected losses, with minimal information about

network architecture, under a range of shock distributions. This paper examines the degree

to which different interbank network architectures change the profitability and financial

stability of the system and tracks systemic risk in the form of bank avalanches.

Finally, this paper contributes to the literature by using complexity economics and agent

based modeling (ABM) to examine bank avalanches and systemic risk within an intercon-

nected financial system. This paper uses an ABM with behavioral rules for banks and

evaporates, one observes a sequence of slides - some very small, others quite large - occurring at random
places on the pile. (The evaporation process can be sped up by placing the box on a warm surface, or under
direct sunlight.) This experiment is also exceptionally portable, and is best done on a sunny day at the
beach.”
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non-financial transactors as in Friedman (1998 and 2012) to analyze systemic risk in a com-

plete network, unconnected network, circle network, and star network. The systemic risk in

this ABM emerges as a critical state as a result of the system dynamics and the interac-

tions between agents Bak et. al (1988). ABMs are well suited to examine systemic risk

as they allow agents to be unique and different, interact locally, and exhibit adaptive be-

havior (Grimm et. al. (2010)). Furthermore, ABMs are evolving complex systems in which

shocks come endogenously from the behavior and interactions of individual agents rather

than coming from exogenous shocks outside of the system (Bookstaber (2012), Bookstaber

et. al. (2014), Battiston et. al. (2016)). Recently, Leduc et. al. (2016) use an agent based

model to examine systemic risk in financial networks with credit default swaps (CDS) and

find that the CDS market improves resiliency to insolvency cascades.

3 Model Description

3.1 Overview

The purpose of this agent based model (ABM) is to examine the emergence of systemic risk

in a financial network that has banks and non-financial transactors. ABMs are used for

explaining systems level behavior because of their unique ability to include heterogeneity of

and among agents, local interactions and learning among agents, and adaptive behavior of

agents. This bank avalanche model of systemic risk has banks and non-financial transactors

that follow behavioral rules from Friedman (1998) with different network architectures. The

systemic risk in this model leads to bank avalanches as the failure of one bank impacts the

failure of other banks in the financial system. A better understanding of these dynamics can

provide insights into how the interconnected actions of bank operations leads to systemic

risk, the ways in which financial network topography affect financial stability, and possibly

assist in developing policies to mitigate these risks. This model description proceeds covers

three main areas: overview, design concepts, and details (Grimm et. al. (2010)).
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Entities

The two entities in this ABM are the banks and non-financial transactors (NFTs). Bank

avalanches occur when more than one bank becomes insolvent and defaults at the same time

in a simulation. The banks interact directly with NFTs and through the interbank market

with other banks. Each bank maximizes their net interest revenue by taking deposits D,

making loans L, and making interbank loans IL while making sure to maintain the minimum

reserve requirement R. The non-financial transactors in this ABM use the financial system to

make deposits D and apply for loans L. The non-financial transactors affect the interactions

and activities of the banks.

State Variables and Scales

This ABM has several system level state variables. The first state variable is the interbank

network architecture through which the banks can borrow and lend to other banks. As

seen in Figure 1, we consider the following architectures: complete network, unconnected

network, circle network, or star network. In the complete network, each bank trades inter-

bank deposits ID and interbank loans IL with all the other banks in the network. In the

unconnected network, banks cannot trade interbank deposits ID and interbank loans IL in

the network. In the circle network, each bank makes interbank deposits ID and loans with

neighboring banks. In the star network, each bank has a centrally cleared transaction of

interbank deposits ID and interbank loans IL. The other system state variable is the total

number of banks in the network.

There are state variables specific to the banks and to the NFTs. The state variables

specific to the banks are the bank loan rate to the NFTs ploan and the bank reserve require-

ment R, which is a percentage of bank assets in reserves. The state variables specific to

the NFTs include: the deposit rate pdeposit (the rate the NFT makes a deposit to the bank),

the withdrawal rate pwithdrawal (the rate the NFT withdraws a bank deposit), the repayment

rate prepayment (the rate the NFT repays a loan), and the default rate pdefault (the rate the
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(a) Complete Network. (b) Unconnected Network.

(c) Circle Network. (d) Star Network.

Figure 1: Interbank Networks of the Bank Avalanche Model of Systemic Risk.

NFT defaults on a bank loan).

This ABM operates on a daily frequency time scale where each tick in the simulation

represents a day. The ABM can be setup to run any number of simulations and restarts

to a new simulation once all of the banks in the network become insolvent. The simulation

ends once all of them have been completed.

Process Overview and Scheduling

This ABM has several steps at each period of the simulation which are outlined in the

flow diagram of the bank avalanche model in Figure 1. When the simulation begins, the

NFT engages in retail activity by making a deposit or a withdrawal as well as commercial

activity to engage in a loan application, loan repayment, or default on a loan. Once the

NFTs have completed their actions each bank examines their level of reserves relative to the

7



reserve requirement. If a bank has a level reserves greater than their reserve requirement

then the bank can provide a loan to an NFT or an interbank loan to another bank. If the

level of reserves equals the reserve requirement then the bank does not take any additional

actions. When reserves are less than the reserve requirement then the bank uses its deposits

to replenish its reserves, uses the interbank deposits to replenish its reserves, recalls loans

from other banks, or recalls loans from NFTs. Once the bank has an appropriate level of

reserves it must check to see its level of capital. When bank capital is positive the bank

is solvent and continues to the next period otherwise the bank is insolvent and must be

removed from the simulation.

3.2 Design Concepts

Basic principles

The basic principle for the banks in this model is to maximize their net interest revenue.

Bank net worth is measured by its capital K = R + L + IL − D − ID, which is the sum

of assets (reserves R, loans to NFTs L, and interbank loans IL) less liabilities (deposits

from NFTs D and interbank deposits ID). The banks maximize net interest revenue by

minimizing their reserves R by making loans to loan applicants L and to other banks IL.

In particular, each bank attempts to keep its reserves R equal to the reserve requirement

R∗ by using deposits D, interbank deposits ID, and calling in loans L. A bank without

sufficient deposits from NFTs to meet its requirements will access the interbank market to

make this funding available from another bank in their network. When Ri falls below 0 and

the number of interbank loans outstanding IL = 0 then bank is illiquid. The bank i can

increment reserves R by recalling loans Li, increasing its deposits Di and interbank deposits

ID. A bank reaches a critical state and becomes insolvent when bank capital K < 0 and

becomes bankrupt and must be liquidated. The increased market stress as a result of this

insolvency and liquidation of loans L and interbank loans IL can affect neighboring banks

that are counterparties of these transactions because of reduced overall market liquidity.
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The basic principle for the NFTs is to make deposits and apply for loans at the banks

which in turn affect the financial position of the banks. An NFT makes a a new deposit

or loan with some positive probability pdeposit and ploan according to a Poisson distribution

process. An NFT deposit leads to a deposit Di + 1 and new loan Li + 1 events at a bank i.

Withdrawal Di − 1 and repayment Li − 1 events at a bank and are also initiated by NFTs

randomly with probability pwithdrawal and prepayment per unit of D and L every time period.

There is a probability pdefault of a loan default at bank i causing Li−1∗ that induces a lower

value of capital Ki − 1 but no change in reserves Ri.

The basic principle of the interbank market is to allow each bank to make interbank loans

IL and interbank deposits ID with other banks in their network. At every point in time

during the simulation, the ABM tracks the reserves Ri that each bank has on hand, amount

of deposits Di that each bank has from NFTs, and the number of loans Li to NFTs. Each

deposit and loan in this model have a value of 1 which makes reserves, deposits, and loans

all integer values. In the model, there are interbank loans IL and interbank deposits ID

between the banks in the network. In the real world, these connections could also represent

the interbank market for CDs, credit default swaps, and FX contracts. The interbank assets

for bank i are the sum of interbank loans and interbank deposits Ai = Ii+1 − Ii = IL − ID.

There is a balance so that the total bank deposits in the financial system is equal to the

sum of the deposits at each individual bank DT =
∑N

i=1 Di and the total loans by the banks

in the financial system equals the sum of the loans at each individual bank LT =
∑N

i=1 Li.

Although the total interbank deposits ID and interbank loans IL balance on the system level,

the ID and IL may not balance at an individual bank. In this way, it is possible that an

individual bank will not have the sum of its deposits equal the sum of its loans. When an

individual bank does not have sufficient deposits from NFTs to meet its reserve requirement

or has insufficient loans applications to satisfy the deposits then the bank will access the

interbank market to request funds from another bank.

9



Adaptation

The banks make decisions and adapt behavior in each period to meet regulatory requirements

for bank reserves, to remain competitive relative to other banks, and to respond to the market

environment. The model uses a fixed Poisson distirbution process for the loan rate ploan

and bank reserve requirements R∗ that provide baseline parameters for the bank behavior.

The market environment is described by the Poisson distribution process for the deposit rate

pdeposit, withdrawal rate pwithdrawal, repayment rate prepayment, and default rate pdefault. At

each period every bank makes decisions about their strategy to maximize their net interest

revenue through their operations with NFTs and with other banks. The banks engage in use

their interbank network and through these relationships observe the strategies, profitability,

and insolvency of neighboring banks. Banks can change their strategies by changing their

reserve holdings. Although a bank must meet the minimum reserve requirement they can

decide to increase or change their reserves so long as the amount of capital that they have

is positive.

Objectives

The objective of the banks is to maximize their profits as measured by their net interest

revenue. The success of the banks will depend on their profitability which is linked to the

degree to which they are lending and their leverage. Profitability is the net interest revenue

in each period. Recall that bank net worth is its capital K which is the sum of reserves,

loans, interbank loans and less deposits and interbank deposits K = R + L + IL −D − ID.

It is implicitly assumed that interest rate paid on loans L is higher than interbank loans

IL which is higher than the interest rate paid on reserves R. Furthermore, banks do not

want to be illiquid or become insolvent but do not have information on the entire banking

system. Throughout the simulation the banks will increasingly increase their profitability

by reducing their reserves which increases the possibility of a liquidty or insolvency event in

the future.
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Sensing

The banks in this model sense the state of the economy and the behaviors of the other banks

in their network. When the economy is doing well, the banks are receiving deposits and

withdrawals as NFTs have to satisfy their retail banking needs. In addition, as the economy

performs well, the banks sense an increased demand for loans, an increase in loan repayment

rates, and a decrease in the loan default rates. On the other hand, when the economy is

doing poorly, then the banks will sense a decreased demand for loans, a decreased demand

for loans, a decrease in loan repayment rates, and an increase in loan default rates. The

banks also sense the behaviors of the other banks in their network through their dealings

with other banks. For example, when the economy is performing well, banks on average

will have a higher rate of deposit from NFTs and a higher demand for loans. Banks can

use the interbank market to either lend excess deposits or to borrow money to meet the

demand from loan applicants. Because a bank can only use the interbank market if it has a

connection with another bank the more connected bank networks are better able to borrow

and lend excess deposits on the interbank market.

Interaction

The banks in this model interact with the non-financial transactors (NFTs) directly and

interact with other banks in their network according to the behavioral rules. This ABM

assumes a Poisson probability distribution of behavior that the NFTs interact with the banks

to make deposits and withdrawals, apply for loans, and default with some probability and

then examines how the banks react to these behaviors to make interbank loans and deposits.

The banks interact with other banks in the system in order to gain competitive advantage.

The interbank transactions is a main interaction element in this ABM. When an NFT

deposits or applies for a loan at a bank then this bank has the opportunity to conduct

interbank transactions other banks in the network. A transaction of 1 dollar from bank i

to bank j could have one of the following effects. First, Ri,t − 1 → Ri,t+1 implies that a
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bank experiences a withdrawal in the form of a deposit or a loan with either an NFT or

another bank at time t and therefore has a change in the value of reserves Ri at time t + 1

from what it had at time t. Whenever this type of interaction occurs at bank i there is a

counterparty bank j which experiences Rj,t + 1→ Rj,t+1 which is an increase in the level of

reserves by 1 at time t to time t + 1. The simulation keeps track of interbank loans and

deposits. Therefore, if we suppose NFTs initiate deposit at bank j but then a loan at bank

k, assume that j = i − 1 and k = i + 1, bank j reacts to this by increasing its interbank

loans IL at neighboring bank i. Note that the assets Ai is unaffected and Ri and Ki also

remain unchanged.

The banks in this financial system also can experience a liquidity crisis as internal forces

push the financial system to a critical state. Suppose that each bank has a target level of

reserves R∗. In this financial system, when bank i has just enough deposits to meet its

reserve requirement target R∗ and an NFT deposit withdrawal or loan request that renders

bank i illiquid. When bank i becomes illiquid the system can go into a critical state as

this withdrawal from bank i goes to the neighboring bank j. This neighboring bank j can

then become illiquid and this can spread the local episode to other banks in the system.

Similarly, when a bank decides to have larger reserves and to change its reserve target it

then can call in the loans that it has made to the other banks. Therefore, the NFTs see a

critical state and rationally accelerate the crisis.

The banks in this financial system can experience a solvency crisis in the course of

their every day interactions. A bank solvency crisis happens because the professional bank

managers lower the capital K that they hold at the bank relative to bank assets over time.

First, the banks managers lower the capital K because the banks that have higher K will

lower K to be competitive with other banks. Banks with a lower K will be able, all else

equal, to pay out more to shareholders and to show a higher return on equity. Banks

with higher K will come under pressure to emulate the banks with the apparently lower K.

Second, the bank manager compensation typically depends on relative performance. While
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bank managers are not penalized for poor performance in bad times they have an incentive

to show the same profitability as other banks in good times. Therefore, until a state of

criticality is reached the bank managers will have an incentive to reduce the K of their

bank relative to the other banks. Loan default causes bank i to become insolvent. This

spreads and causes other connected banks to become insolvent. Moral hazard of government

intervention is not part of this model.

3.3 Design Details

Initialization

The model initialization includes calibration parameters for the banking network and system

dynamics as well as a set of initial economic conditions for good economic times and bad

economic times. The bank network is either a complete network, unconnnected network,

circle network, or star network. The most up to date data on banks and other bank holding

companies is used to initialize the ABM at 8 banks.6 In addition, the bank reserve ratio is

30 percent, starting deposits are 100, starting reserves are 303, starting loans are 700, the

loan interest rate is 5 percent, and the deposit interest rate is 1 percent. The intuition for

the starting level of reserves is that all banks start the simulation just slightly above the

reserve requirement. For the simulations with good economic conditions the deposit rate is

3 per period, withdrawal rate is 2 per period, loan rate is 3 per period, repayment rate is 2

per period, and the default probability is 1 percent. For the simulations with bad economic

conditions the deposit rate is 3 per period, withdrawal rate is 3 per period, loan rate is 2

per period, repayment rate is 2 per period, and the default probability is 10 percent.

6Both the Federal Reserve Board of Governors and the Financial Stability Oversight Council (FSOC)
provide public information on the following eight global systemically important bank holding companies
(GSIBs): Bank of America Corporation; The Bank of New York Mellon Corporation; Citigroup, Inc.; The
Goldman Sachs Group, Inc.; JPMorgan Chase & Co.; Morgan Stanley; State Street Corporation; and Wells
Fargo & Company.
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Input data

The current version of this ABM uses reasonable parameter values and initial conditions.

Future versions could incorporate other model parameter values and initial conditions.

4 Results

The simulation results indicate that more interconnected bank networks have longer bank

lifespans, are more profitable, but are also more likely to experience a bank avalanche than

less interconnected bank networks. Furthermore, the profitability and the financial stability

of the bank networks depends on the economic conditions. Simulations are conducted

across all of the networks using a model calibration with good economic conditions and

using a model calibration with bad economic conditions. The results indicate that there is

greater dispersion in profitability and financial stability across the networks when there are

good economic conditions than when there are bad economic conditions. Furthermore, the

circle network performs best of all the networks in terms of bank lifespan, profitability, and

also has less bank avalanches than the complete network.

When the model is calibrated with good economic conditions the mean simulation results

indicate that the circle network performs the best of all the financial networks in terms of

bank lifespan and profitability. For the simulations with good economic conditions the

deposit rate is 3 per period, withdrawal rate is 2 per period, loan rate is 3 per period,

repayment rate is 2 per period, and the default probability is 1 percent. As seen from Table 1,

the mean bank lifespan is longest for the circle network with 9,460, for the star network is

2,668, for the complete network is 1,499, and the unconnected network is 726. The average

profitability is highest for the circle network with 3,794,223 followed by the star network with

1,693,435, the complete network with 791,983, and the unconnected network with 152,019.

The bank avalanche statistics indicate that they are highest for the complete network with a

mean of 0.56, followed by circle network with 0.01, and no bank avalanches for the star
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network or the unconnected network. Appendix Table A1 provides even more detailed

summary statistics on model simulations calibrated using good economic conditions.

Table 1: Mean of Simulation Results (Good Economy)
Sheet1

Complete Network Unconnected Network Circle Network Star Network
Bank Lifespan 1,499 726 9,460 2,668
Profitability 791,983 152,019 3,794,223 1,693,435
Bank Avalanche 0.56 0.00 0.01 0.00

Page 1

The cumulative density functions of bank lifespan and profitability under good economic

conditions provide additional insights into the results. Appendix Figure A2 shows that the

bank lifespan for the circle network in good economic conditions is very different from the

other financial networks. The bank lifespan for the unconnected network is the shortest

and ends at about 2000. The bank lifespan for the complete network and the star network

stabilize at 2000 with about 20 percent of the banks then continuing on until 10,000. The

circle network, however, loses about 5 percent of the banks in the very beginning but then

about 95 percent of the banks have a lifespan until 10,000. Appendix Figure A4 shows

very different profitability cumulative density functions for the different financial networks.

Almost 90 percent of the banks in the circle network make a profit over 3 million. In the

complete network about 70 percent of the banks earn a profit of less than 1 million and

30 percent of the banks make a profit of over 2 million, but none over 3 million in profits.

About 25 percent of the banks in the star network make less than 2 million and the other

75 percent of the banks earn a little over 2 million. Appendix Figure A6 shows that the

complete network has by far the most bank avalanches of any of the other networks.

When the model is calibrated with bad economic conditions the simulation results also

indicate that the circle network performs best of all the financial networks in terms of bank

lifespan and profitability. As seen from Table 2, the average bank lifespan is longest for

the circle network with 95 and followed by the star network with 94, the complete network

with 81, and the unconnected network with 70. The average profitability is highest for the

circle network with 19,004, the star network with 18,653, the complete network with 16,093,
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and the unconnected network with 13,796. The bank avalanche statistics indicate that the

complete network has the highest amount of bank avalanches with a mean of 0.24, followed

by the circle network with 0.09, the star network with 0.03, and no bank avalanches for the

unconnected network.

Table 2: Mean of Simulation Results (Bad Economy)
Sheet1

Complete Network Unconnected Network Circle Network Star Network
Bank Lifespan 81 70 95 94
Profitability 16,093 13,796 19,004 18,653
Bank Avalanche 0.24 0.00 0.09 0.03

Page 1

The cumulative density functions of bank lifespan and profitability under bad economic

conditions indicate less variation across the different networks than was present under good

economic conditions. Appendix Figure A3 show that cumulative density functions for bank

lifespan is relatively the same across the different network. The bank lifespan for the un-

connected network is the shortest and ends at about 160. However, the bank lifespans for

the complete, circle, and star network converge to the same place at over 500. Appendix

Figure A5 indicate that similar cumulative density functions of profitability for the different

financial networks. The profitability of the unconnected network is the lowest of all the

other networks and ends at 30,000. The cumulative density functions for profitability show

no noticeable differences for the the complete network, circle network, and star network. The

maximum profitability for the unconnected network is much lower than the other networks

but only about 1 percent of banks earn more than 75,000 in the complete network, circle

network, and star network. The Appendix Figure A7 shows that the complete network has

by far the most bank avalanches of any of the other networks. The complete network has 176

instances with 1 bank avalanche, 31 instances with 2 bank avalanches. The circle network

has 58 instances of 1 avalanche and 16 instances of 2 avalanches. The star network has 32

instances with 1 avalanche while the unconnected network, by definition because it does not

have an interbank network, does not have any avalanches.

The two main results are that the circle network exhibits the best performance of all the
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networks and that network matters much more when there are good economic conditions

than when there are bad economic conditions. One possible explanation for why the circle

network does so well relative to the other networks in terms of bank lifespan, profitability,

and bank avalanches is that a few of the banks become insolvent at the beginning of the

simulation but because they are not connected to the entire system it does not bring down

the other banks. In the complete network there is less of a change for bank failures for the bad

banks to occur but then when they do the financial contagion spreads to the healthy banks

too. In the unconnected and the star networks the banks are unable to take full advantage

of the interbank network even if they are less likely to experience financial contagion. There

is a much greater dispersion in the performance of the financial networks when there are

good economic conditions than when there are bad economic conditions. More work must

be done to explore the role of economic conditions on network performance.

5 Conclusion

This paper developed a model of systemic risk to examine the emergence of profitability

and financial stability of different bank networks. This agent based model (ABM) intro-

duced behavioral rules for banks and non-financial transactors with an interbank market

that included a complete network, unconnected network, circle network, and a star network.

Simulations were used to examine the behavior of the model using good economic conditions

and bad economic conditions in the different interbank networks. These simulation results

for the good economic conditions indicated that more interconnected interbank networks had

longer bank lifespan and higher profitability but also a higher incidence of a bank avalanche

or financial contagion. Interestingly, the circle network performed better than all of the other

interbank networks, including even the complete network, suggesting that there are limits to

the benefits of interconnections in good economic conditions. Whether the economic con-

ditions were good or bad also appear to affect the bank lifespan, profitability, and incidence
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of bank avalanche.

This paper showed that the structure of interbank connections can affect financial con-

tagion and the emergence of systemic risk. The results in this paper contrast with those of

Allen and Gale (2002) that the complete network is the most stable and Acemoglu, Ozdaglar,

Tahbaz-Salehi (2013) that incomplete networks are more stable than incomplete networks

as long as shocks are small. Whereas in those models the shocks came from an external

source the shocks in this model emerged through the interactions of the agents as the system

reached a critical state which lead to bank avalanches. In this paper the circle network, in

which the banks are not fully connected but also not unconnected either, perform the best

in terms of bank lifespan and profitability. Furthermore, in this paper the performance of

the various interbank networks depends also on the state of the economy and shows greater

variation when there are good economic conditions than when there are bad economic condi-

tions. In the future, the model calibration could possibly integrate real time data to monitor

and stress test the global financial system. This paper also assumed that all the banks in

the system faced the same set of parameters and regulatory frameworks. Future work could

also explore financial stability dynamics in which the banks were not only different at the

time of initialization but in which they actually faced different sets of regulations and how

that would affect the system as a whole. This bank avalanche model of systemic risk can

also be used to examine related issues in financial stability.
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Appendix A

Figure A1: Flowchart of Bank Avalanche Model of Systemic Risk.
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Table A1: Summary Statistics of Simulation Results (Good Economy)
Sheet1

Complete Network Unconnected Network Circle Network Star Network
Bank Lifespan

Mean 1,499 726 9,460 2,668
Std. Dev. 2,546 291 2,198 3,665
Min 12 15 25 35
Max 10,080 1,938 10,101 10,093
Obs. 1,000 1,000 1,000 1,000

Profitability
Mean 791,983 152,019 3,794,223 1,693,435
Std. Dev. 912,118 36,537 786,974 712,499
Min 14,618 64,971 8,379 63,132
Max 4,029,960 323,740 4,191,759 2,220,368
Obs. 1,000 1,000 1,000 1,000

Bank Avalanche
Mean 0.56 0.00 0.01 0.00
Std. Dev. 0.69 0.00 0.13 0.00
Min 0 0 0 0
Max 3 0 3 0
Obs. 1,000 1,000 1,000 1,000

Page 1

Table A2: Summary Statistics of Simulation Results (Bad Economy)
Sheet1

Complete Network Unconnected Network Circle Network Star Network
Bank Lifespan

Mean 81 70 95 94
Std. Dev. 91 29 116 71
Min 2 1 3 4
Max 2,205 188 1,834 1,649
Obs. 1,000 1,000 1,000 1,000

Profitability
Mean 16,093 13,796 19,004 18,653
Std. Dev. 9,410 3,381 20,122 6,960
Min 3,072 5,845 3,823 3,768
Max 127,685 29,964 358,212 92,745
Obs. 1,000 1,000 1,000 1,000

Bank Avalanche
Mean 0.24 0.00 0.09 0.03
Std. Dev. 0.49 0.00 0.34 0.18
Min 0 0 0 0
Max 2 0 2 1
Obs. 1,000 1,000 1,000 1,000

Page 1
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Figure A2: Cumulative Density Function of Bank Lifespan (Good Economy)
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Figure A3: Cumulative Density Function of Bank Lifespan (Bad Economy)
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Figure A4: Cumulative Density Function of Profitability (Good Economy)
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Figure A5: Cumulative Density Function of Profitability (Bad Economy)
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Figure A6: Summary Statistics of Bank Avalanches (Good Economy)

Complete  Network Unconnected Network Circle Network Star Network
No Avalanches 547 1000 991 1000
1 Avalanche 346 0 8 0
2 Avalanches 103 0 0 0
3 Avalanches 4 0 1 0

Figure A7: Summary Statistics of Bank Avalanches (Bad Economy)

Complete Network Unconnected Network Circle Network Star Network
No Avalanches 793 1000 926 968
1 Avalanche 176 0 58 32
2 Avalanches 31 0 16 0
3 Avalanches 0 0 0 0
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